HAL- The Missing Piece of the Puzzle for Hardware Reverse Engineering, Trojan Detection and Insertion
نویسندگان
چکیده
Hardware manipulations pose a serious threat to numerous systems, ranging from a myriad of smart-X devices to military systems. In many attack scenarios an adversary merely has access to the low-level, potentially obfuscated gate-level netlist. In general, the attacker possesses minimal information and faces the costly and time-consuming task of reverse engineering the design to identify security-critical circuitry, followed by the insertion of a meaningful hardware Trojan. These challenges have been considered only in passing by the research community. The contribution of this work is threefold: First, we present HAL, a comprehensive reverse engineering and manipulation framework for gate-level netlists. HAL allows automating defensive design analysis (e.g., including arbitrary Trojan detection algorithms with minimal effort) as well as offensive reverse engineering and targeted logic insertion. Second, we present a novel static analysis Trojan detection technique ANGEL which considerably reduces the false-positive detection rate of the detection technique FANCI. Furthermore, we demonstrate that ANGEL is capable of automatically detecting Trojans obfuscated with DeTrust. Third, we demonstrate how a malicious party can semi-automatically inject hardware Trojans into third-party designs. We present reverse engineering algorithms to disarm and trick cryptographic self-tests, and subtly leak cryptographic keys without any a priori knowledge of the design’s internal workings.
منابع مشابه
Security-aware register placement to hinder malicious hardware updating and improve Trojan detectability
Nowadays, bulk of the designers prefer to outsource some parts of their design and fabrication process to the third-part companies due to the reliability problems, manufacturing cost and time-to-market limitations. In this situation, there are a lot of opportunities for malicious alterations by the off-shore companies. In this paper, we proposed a new placement algorithm that hinders the hardwa...
متن کاملHardwar Trojan classification and implementation and offer a new detection approach
A hardware attack that enables the attacker to alter the main circuit with malicious hardware during either design or the fabrication process is studied and analyzed. This attack, known as the hardware Trojan, has different objectives such as destroying hardware, changing circuit characteristics or extracting sensitive information. So hardware Trojan detection and hardware security are critical...
متن کاملSecure FPGA Design by Filling Unused Spaces
Nowadays there are different kinds of attacks on Field Programmable Gate Array (FPGA). As FPGAs are used in many different applications, its security becomes an important concern, especially in Internet of Things (IoT) applications. Hardware Trojan Horse (HTH) insertion is one of the major security threats that can be implemented in unused space of the FPGA. This unused space is unavoidable to ...
متن کاملTriggering Hardware Trojans in EPC C1G2 RFID Tags
This paper addresses the Hardware Trojan issues in passive EPC C1G2 RFID Tags. We propose in this paper to study the insertion of malicious circuit in EPC GEN2 RFID tags. The description and the implementation of several different Hardware Trojans are first discussed. Then they are all evaluated in an EPC GEN2 environment using a dedicated FPGA based tag emulator. The evaluation focuses on crit...
متن کاملSystem-Level Methods to Prevent Reverse-Engineering, Cloning, and Trojan Insertion
The reverse-engineering (RE) is a real threat on high-value circuits. Many unitary solutions have been proposed to make RE difficult. Most of them are low-level, and thus costly to design and to implement. In this paper, we investigate alternative solutions that attempt to deny the possibility of RE using high-level methods, at virtually no added cost.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017